

The Role of Information Elements in Net Centric Data Management

Presentation to the Sixteenth Systems and Software Technology Conference, April 2004

By Silver Bullet Solutions, Inc.

Briefing Outline

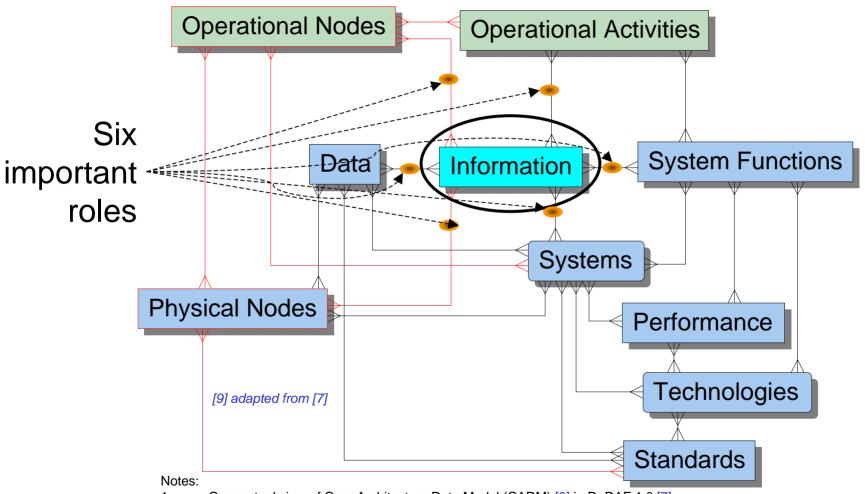
- Definition of Information Elements
 - Roles in
 - Architecture
 - System Engineering
 - Information Requirements Description
 - Systems Analysis
 - Capabilities Definition
- Net Centric Data Strategy
 - Goals and Elements
 - IE Roles in the Elements
 - COI Determination and Interaction
 - Understanding and Discovery
 - Ontologies
 - Taxonomies
 - Harmonization and Mediation
 - Metadata Attributes

Working Definitions

Information Element

- From "information" -- "data in context"
- e.g., "Electronic Order of Battle for KP", "SPAWAR Execution Year Budget (OMN)", "Landing Gear part number for F/A-18 E/F"
- Language of humans: operators, engineers, designers can communicate

Data Element


- An entity, attribute, or relationship or equivalent
- e.g., FACILITY, FACILITY-TYPE, FACILITY-GEOLOCATION, FACILITY-MATERIEL-ITEM-ESTABLISHMENT-NORM, MATERIEL-ITEM-RF-EQUIPMENT, etc. (for EOB)
- Language of machines: computer knows what to access

Equivalences:

E-R Model	Class Diagram	Relational Database	Object DBMS	XML DTD / Schema	TADILs	MTF
Entity	Class	Table	Class	Element	Message	Message
Attribute	Attribute	Field / Column	Attribute	Child Element or Element Attribute	DFI	FFIRN / FFN / FUDN
Domain Value		Instance, Value			DUI	FUD

Roles in Architecture

1. Conceptual view of Core Architecture Data Model (CADM) [9] in DoDAF 1.0 [7]

2. 'crows feet' means 'many'; on both ends means 'many-to-many'

3. All entities have recursive 'many-to-many' with themselves (not shown)

Roles in Architecture (Reports)

BRINGING INFORMATION TOGETHER

APPLICABLE ARCHITECTURE DATA ELEMENT SETS

		APP	LIC	ABI	_E A	RCH	IIIE	וטוג	KE D	AIA	ELI	FMF	NI S	EIS	<u> </u>								
TAXONOMY TYPES	STRUCTURE	A۱	٧	C	per	atio	nal \	/iew	/ (O\	V)) System View (SV)							Tech View					
		1	{2}	1	{2}	{3}	{4}	{5}	{6}	{7}	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10	{11	(1}	{2
Operational Nodes Organizations, Types of Organizations, and Occupational Specialties	Generalization & Composition		•		•	•	•	•	•		•					•							
Operational Activities (and Tasks)	Composition		•			•		•	•						•	•							
Information Elements and Data Elements	Generalization & Composition		•		•	•		•	•	•				•		•				•	•	•	0
Physical Nodes Facilities, Platforms, Units, and Locations	Generalization & Composition		•								•	•	•	•		•							
Systems Families-of-Systems, Systems-of- Systems, Networks, Applications,	Generalization & Composition		•								•	•	•	•	•	•	•	•	•	•		•	•
System Functions	Composition		•								•			•	•	•	•	•	•	•			
Triggers / Events	Generalization & Composition		•			•		•	•					•		•				•			
Performance Attributes	Generalization & Composition		•					•						•		•	•	•	•				
Technical Standards Info Processing, Info Transfer, Data, Security, and Human Factors	Generalization & Composition		•								•	•		•		•		•	•		•	•	•
Technology Areas Systems and Standards	Generalization & Composition		•																•				•

Adapted from [7]

blank = element not part of this datase

^{● =} Taxonomy element plays a primary role

Secondary role

Roles in System Engineering

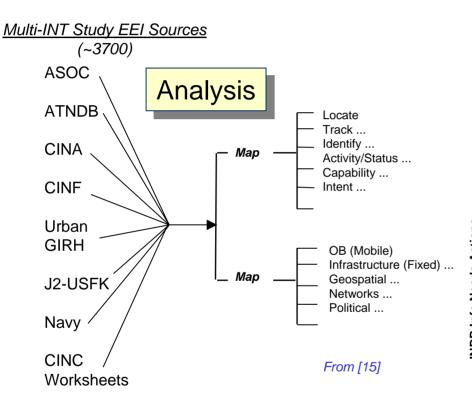
3.3.1 TDS Interfaces

BRINGING INFORMATION TOGETHER

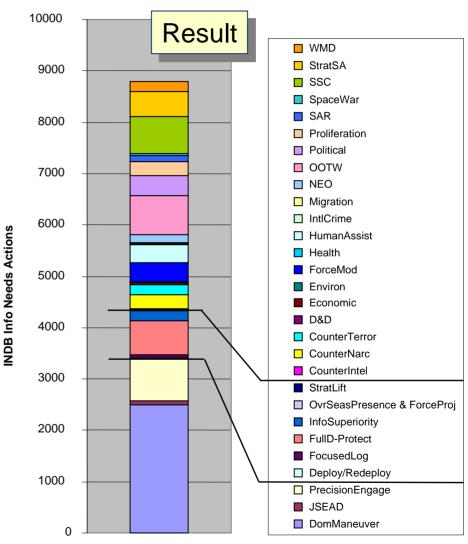
Example from AADC System Spec.

(2) The AADC system shall be capable of interfacing with multiple TDS systems.including, but not limited to, AEGIS and Advanced Combat Decision System (ACDS).

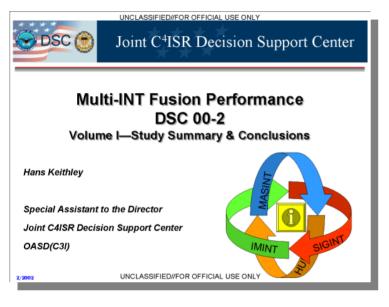
(U) The AADC system shall receive the TDS track file through an interface to the host TDS including:



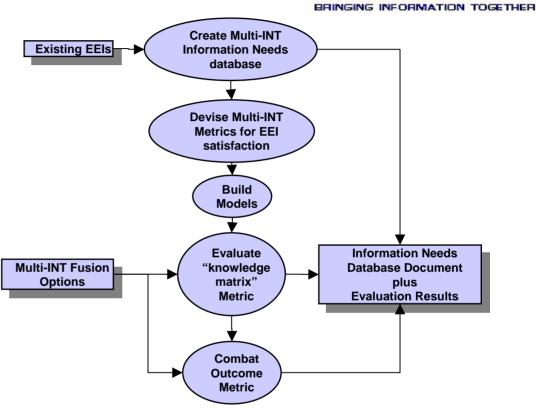
(V) The AADC system shall provide digital force orders to Air Defense assets over Link 11, Link 16 or CEC via the host TDS, depending on host TDS implementation of these functions, including:


5.1	Target Data; Offensive / Integrated Prioritized Target List
5.2	Surveillance/Sensor Plans
5.4	Communications Plans
5.7	Defensive/Force Protection
5.8	Movement
6.1	General Tasking
6.3	Tactical Orders
6.3.4	Direct Employment of Communications, Sensor, and Weapon
626	Engaging Heit/Farget Dynamics
6.3.6	Engaging Unit/Target Dynamics
6.3.7	Third Party Targeting Data
6.3.8	Platform Resource Allocation
6.3.9	Tactical Order Responses

Role in Information Requirements Description (EEIs)



(based on comprehensive analysis of many EEI sources)



Role in Systems Analysis

From [15]

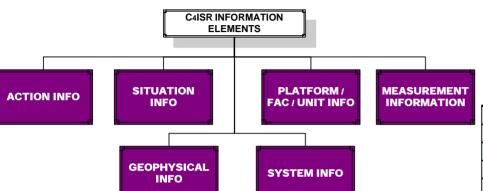
∆ Combat Outcome -----∆ C4ISR Δ Data
----Δ C4ISR

 Δ Knowledge _____ Δ Data

∆ C2 -----∆ Knowledge ∆ Combat Outcome

Λ C2

Role in Capabilities Definition


JBMC2 -- what information?

		Information Categories and Examples												
Object Categories	Examples	Location	Movement	Identify	Status	Activity	Intent							
ООВ	Units, vehicles, sites, facilities, aircraft, ships, satellites	lat/long	spd/hdg	country / alliance, type/class	readiness	targeting, reconitering	COA							
Infrastructure	Comm, power, transportation, water/sewer	network, grid	throughput, flow rates, amps	name, part-of relationships	BDA, op levels	repair, broadcasts	expansion plans							
Sociological	Culture, religion, economic, ethnic, government, history, languages	temples, historic structures	relocations	names and associations	stability, vulnerabilities	political or religious activities	religious or political plans							
Geophysical	Terrain, weather, climatology, oceanography, astrometry	feature lat/long, alt/dpth	flowraters, tides	names	sea and river levels, temperature	storms, volcanos	forecasts							

Working papers from [14]

Example Service IE Taxonomy

 Generalization to fundamental semantics allowed mapping across diverse representations such as:

- TADILs -IBS

- VMF -MIDB

USMTF —C2 Core

 Recognition of the equivalent or similar semantics in the differing representations would be a first step toward harmonization or mediation

A way to manage "isSimilarTo" [8]

	11.8 - Kinem	natics					
From [17]	11.8.1 - F	Pos / Vel / Acc (PVA)					
110111[17]	11.8.1.	1 - Acceleration					
	11.8	3.1.1.1 - Angular					
11.4 - Classification		.1.1.2 - Linear					
11.4.1 - Category		2 - Estimate Type					
11.4.1.1 - Confidence Level		1.2.1 - Estimated					
11.4.1.2 - Estimate Type		1.2.2 - Observed					
11.4.1.2.1 - Alternative		1.2.3 - Predicted					
11.4.1.2.2 - Evaluated Do	ecision	.1.2.4 - Smoothed Data					
11.4.1.3 - Value		B - Position					
11.4.1.3.1 - Air		1.3.1 - Bearing Angle					
11.4.1.3.2 - Land		.1.3.2 - Location; 2D Horizontal					
11.4.1.3.3 - Space		1.3.3 - Vertical					
11.4.1.3.4 - Subsurface		4 - Velocity					
11.4.1.3.5 - Surface		1.4.1 - Horizontal					
11.4.2 - Platform / Point / Fea	ture Type	1.4.2 - Vertical					
11.4.3 - Specific Type) -	VA Confidence					
11.4.4 - Type Modifier		1 - Bearing Angle					
11.4.5 - Unit		2 - Bearing Angle Rate					
711.1.0 CIM	1100	B - Covariance Matrix					
		4 - Elevation					
		5 - Elevation Angle Rate					
	_	6 - Horizontal AOP					
		7 - Horizontal Circular					
		3.2.7.1 - TQ					
		8 - Range					
	11.8.2.	.9 - Vertical					

Matching	The data elements are equal
Mapping	The data elements are equivalent

Elements of Net-Centric Data Strategy

BRINGING INFORMATION TOGETHER

Elements

CO)	Model	XML P. Structure) Regi	Discour	Content Services	Transfer Metadata	GIG Poli	Ontologies	Taxons	Pedior	Securit.	NCES Model
✓	√	✓	✓			√			✓	✓	✓
	✓					✓					✓
✓						✓					
✓		✓	✓	✓			✓	\			
✓			√						✓	✓	√
√	✓	√			√	✓					√
✓						√					

Derived from [2], [3], [4], [6], and [8]

April 2004

Goals

Visible

Trusted

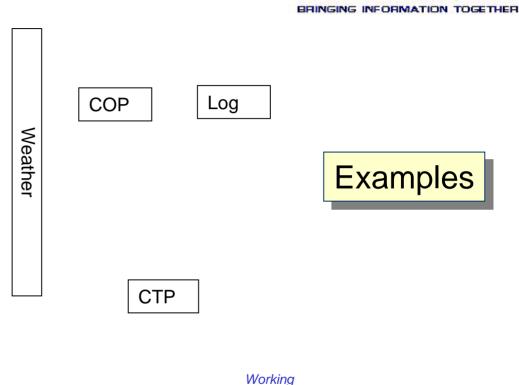
Accessible

Governance

Understandable

Interoperable

Responsive


11

A Spectrum of Data Mgmt

Human filtered
Mitigated by other information
Opportunity for correction

- Coupling and deep integration
- Ultra-high reliability
- Irreversible sudden operational consequence

Automatic Carrier Landing System signals

Fly-by-wire guidance system data

papers for [14]

Selfdestruct message data

COI Topologies

- Types of COIs
 - Expedient
 - Institutional
 - Functional
 - Cross-Functional

- + others yet to be determined

COI Intersections

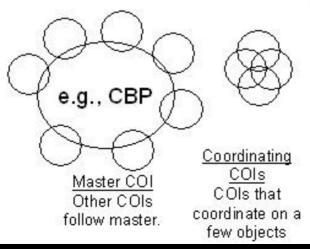
Expedient

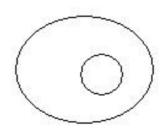
Institutional

Tactically driven,
Implied authority,
Formal processes
modified for need,
Relatively many
entities
(e.g., New Imagery
Analysis capability for
Damage Assessment)

Explicitly recognized,
Longer term,
More formalized
processes based on
span of control,
Relatively few entities
(e.g., PSAs such as
Logistics)

Tactically driven,
Derived authority,
Ad hoc processes,
Many entities
(e.g., Forward deployed JTF
planning New Threat
Response)

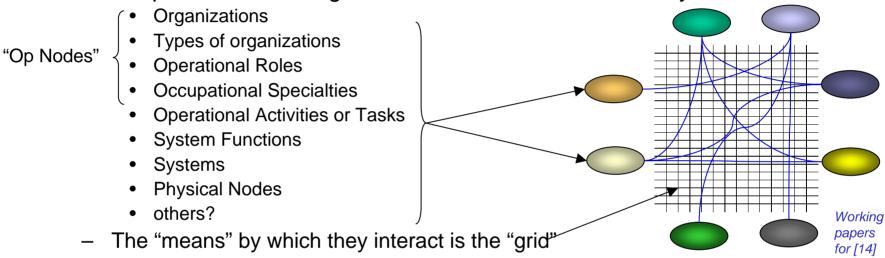

Explicitly or implicitly recognized,
Longer term but priority driven,
Blended processes resulting from agreements
(e.g., JS area such as Battlespace Awareness)


From [3]

Functional

Cross-Functional

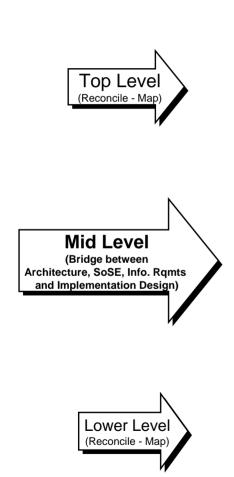
Examples of COI Topologies and Resultant Governance Agreements

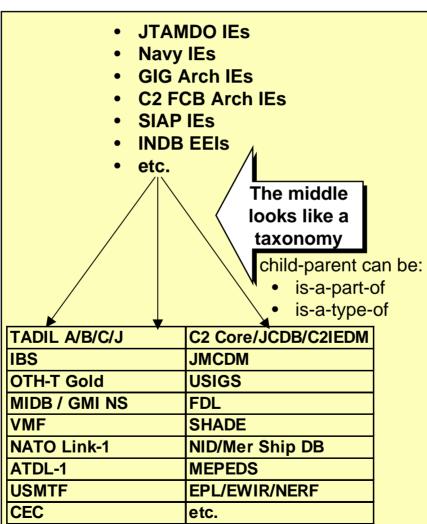


Subset COI (subset could be master, slave, or partner) Working papers for [14]

COIs and Architecture

COIs represent clustering of needs to share information by

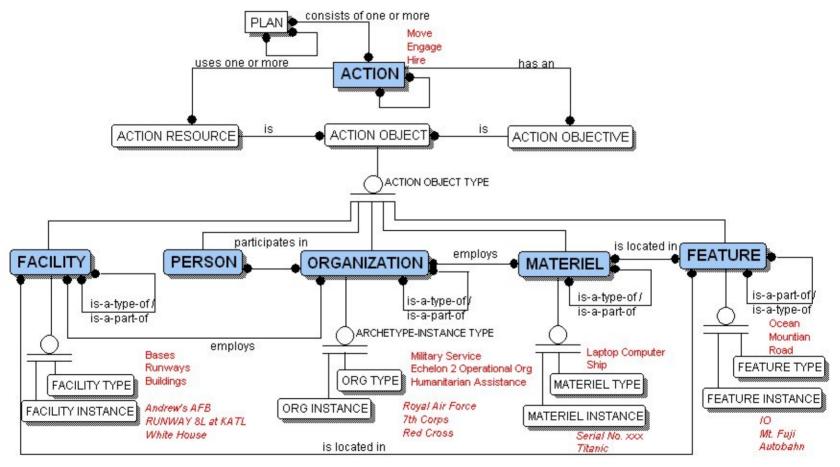



- In Architectures these would be clusters of:
 - Needlines (Op Nodes)
 - Activitylines (Op Activities / Tasks)
 - Functional Interfaces (System Functions)
 - System Interfaces

IEs Support Discovery and Understanding

BRINGING INFORMATION TOGETHE

Human communication Broad audience Shorthand meaning



Machine communication Software Engineers only Explicit meaning

IEs Support Ontology Development

C2 Core [10] (C2IEDM [11] / JCDB) Concepts

From [16]

IE - DE Mappings Support Mediation and Harmonization Management

IRINGING INFORMATION TOGETHER

Existing Databases:

Modernized Integrated Data Base (MIDB)

EW Integrated Reprogramming (EWIR)

GCCS Shared Data Environment (SHADE)

Military Characteristics and Performance data (MEPEDS)

Joint Operations Planning and Evaluation System (JOPES)

Status and Operational Readiness and Testing System (SORTS)

Common Cryptologic Data Base (CCDB)

GCCS Track File (TBDM)

National source for order of battle, facilities, etc.

Frequency, PRI, PW, etc. for all radars

Commonly used eference data p/o Net-Centric metadata registry

Technica on ta on ships, aircraft, etc.

Planning . va

Reactions data

Frequency, carriers, nodes and links

om which COP arises

Message Standards:

Tactical Digital Information Link (TADIL)

Variable Message Format (VMF)

United States Message Text Format (USMTF)

Integrated Broadcast System (IBS)

FAAD Data Link

CEC Datalink

Over the Horizon Targeting, Gold (OTH-T Gold)

TACINTEL II

IDS / IRS / ICD

mw nich COP arises

Standa. Yor command and control

Part of TADIL-J family

Structed for planning messages

Sandard for intelligence surveillance data

orw ard Area Air Defense data link

CEC

COP datalink

Primary datalink for SIGINT systems

Interfaces between systems

Data Standards:

XML Registry

Defense Data Dictionary System ()

Namespaces for Ground Ops, GMI, COP, etc.

Legacy registry p/o Net-Centric metadata registry

Standard Models:

Command and Control Co e Dat, Model

Joint METOC Conceptual Latz Model
Unmanned Aerial Vehicle / Joint Airborne Surveillance Architecture

Defense Data Architecture models

Data model used in JCDB and C2IEDM

Oceanographic and meterological

Datalinks for UAVs

Funtional area models p/o Net-Centric metadata registry

Visions and Architectures

Fn / FCS / MC2C information requirements

NCOW Ref Model ICOMS

Future service architectures

DoD level architecture

IEs are a Tool for Object Semantics

Finance

Transportation

Size:

Packaged weight: Pick up location:

Destination:

Mission Planning

Desired impact point: Time on target: Lethality characteristics:

Applicable aircraft:

Unit cost:

Number required:

Contract number:

What's a bomb?

Attachment time required:

Wing placement: **Assembly instructions: Arming instructions:**

Ground Operations

Weight:

Minimum drop altitude: Approach type:

Drop angle:

Drag coefficient:

Flight Planning

Funding program:

(Answer – all)

Intended target: Casing thickness: **Detonation mechanism:**

Attachment mechanism:

Explosive type:

from MITRE Corp

Adapted

Engineering

IEs provide tractable visibility and concurrence mechanisms, in context and in succeeding levels of detail in integrated architectures

Correct IERs Support Net Centric Data Management

 IERs are defined as <u>materiel independent</u> descriptions of information sharing needs for operations

Op Node that needs the information	(org, org type, op role, occupational specialty)
To do what	(op activity, task, process,)
Op node that produces the info	(org, org type, op role, occupational specialty)
In the course of what	(op activity, task, process,)
What kind of info	(information element)
With any special attributes?	
How fast?	(timeliness)
How secure?	(security)
How much?	(size)
How protected?	(IA)
How accurate?	(accuracy)
etc.	

IERs Do NOT Address Communications -- Point-to-Point, GIG, or otherwise

Summary

IEs support many elements of Net-Centric Data Strategy

Net Centric Data Strategy Elements

			XIML B. Roc.	ry	Services	tadata	GIG Por:	Seplant			lapc	labo	
Information Elements	co,	Model	XML P.	Jiscol	Contend Services	Transf	GIG Por:	Ontole	Taxon	Sedionie	Securit.	NCES Model	
Exchanges, Requirements, and Interfaces	✓	1		7		✓		J		1	√	/	
IE Taxonomies				✓	✓			✓	✓				
Data Element Mappings		✓		✓		✓							
Exchange and Interface Attributes			✓							✓	✓		
IE-Level Conceptual Models		✓						✓	✓				

References

- 1) "DoD Data Administration", DODI 8320.1, OASD (NII) / DoD CIO, 26 Sept 1991
- 2) "Department of Defense Net-Centric Data Strategy", OASD (NII) / DoD CIO, 20 April 2003
- 3) "Communities of Interest in the Net-Centric DoD Frequently Asked Questions (FAQ), Draft", OASD (NII) / DoD CIO, 13 March 2004
- 4) "The DoD Net- Centric Data Strategy And Discovery & Mediation Enterprise Services", briefing by OASD (NII) / DoD CIO, 3 Nov 2003
- 5) "DoD Net-Centric Data Management Strategy: Metadata Registration", memorandum, OASD (NII) / DoD CIO, 3 April 2003
- 6) "Department of Defense Discovery Metadata Specification (DDMS), Version 1.0", Deputy Assistant Secretary of Defense (Deputy Chief Information Officer), 29 September 2003
- 7) "Department of Defense Architecture Framework, Version 1.0", OASD (NII) / DoD CIO, 9 Feb 2004
- 8) DoD XML Registry at http://diides.ncr.disa.mil/
- 9) CADM documentation and model at https://pais.osd.mil/enterprisearchitectures)
- 10) C2 Core documentation and model at http://www-datadmn.itsi.disa.mil/datadmn/dda/c2core.html
- 11) C2IEDM documentation and model at Multilateral Interoperability Program: http://www.mip-site.org/
- 12) Defense Data Architecture (DDA), documentation and models available at http://diides.ncr.disa.mil/
- 13) Information Integration for Concurrent Engineering (IICE), IDEF5 Method Report, Armstrong Laboratory (AL/HRGA), Wright-Patterson Air Force Base, Ohio, 21 Sept 1994
- 14) Joint Battle Management Command and Control (JBMC2) Roadmap, OUSD (AT&L) / JFCOM, Feb 2004
- 15) Keithley, H., Multi-INT Fusion Performance, Joint C4ISR Decision Support Center, OASD(C3I), Washington, D.C., 2001
- 16) Ontology and Fusion (McDaniel, D., "Multi-Hypothesis Database for Large-Scale Data Fusion", Proceedings of the Fifth International Conference on Information Fusion, International Society of Information Fusion, Sunnyvale, CA, 2002)
- 17) Naval C4ISR Operational Architecture, Space and Naval Warfare Systems Command (SPAWAR), 1997